Predicting tobacco risk factors by using social big data
نویسندگان
چکیده
منابع مشابه
Using Big Data for Predicting Freshmen Retention
Traditional research in student retention is survey-based, relying on data collected from questionnaires, which is not optimal for proactive prediction and real-time decision (student intervention) support. Machine learning approaches have their own limitations. Therefore, in this research, we propose a big data approach to formulating a predictive model. We used commonly available (student dem...
متن کاملPredicting the Credit Risk of Loans Using Data Mining Tools
One of the most common causes or credit phenomenon that is taken into account for credit risk is the customer’s noncompliance with the commitments. Thus, by predicting the behavior of loan applicants, the growth rate of debts can be decreased. Hence, this study is conducted on corporate applicants for loans in one of the public banks in Iran. In this paper, the main elements comprising the cus...
متن کاملPredicting Risk of Type 2 Diabetes by Using Data on Easy-to-Measure Risk Factors
INTRODUCTION Statistical models for assessing risk of type 2 diabetes are usually additive with linear terms that use non-nationally representative data. The objective of this study was to use nationally representative data on diabetes risk factors and spline regression models to determine the ability of models with nonlinear and interaction terms to assess the risk of type 2 diabetes. METHOD...
متن کاملQuerying Big Social Data
Big data poses new challenges to query answering, from computational complexity theory to query evaluation techniques. Several questions arise. What query classes can be considered tractable in the context of big data? How can we make query answering feasible on big data? What should we do about the quality of the data, the other side of big data? This paper aims to provide an overview of recen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2015
ISSN: 1598-9402
DOI: 10.7465/jkdi.2015.26.5.1047